
Building Dependable
Systems with Open Source
Kate Stewart, The Linux Foundation

#OSSummit

Modern products are more than
just hardware and software

#ossummit

“Ingredients” for a Modern Car

• Hardware
– Traditional BOM, but with more CPUs, MCUs & GPUs incorporated

• Software
– Managing interaction between sensors, actuators, humans & environment

– Managing trained AI/ML models that assist in the safe & efficient operation of the
vehicle

• Training Data Sets
– Data used to train, test & validate the AI/ML models in use the system

• Communication to Remote Services
– External environment awareness for navigation support

– Updates to the software, firmware & models

We need to leverage a
System Engineering
approach to manage risk
from the interactions of all
these ingredients

Source: https://incidentdatabase.ai/

https://incidentdatabase.ai/cite/550
https://incidentdatabase.ai/cite/540
https://incidentdatabase.ai/cite/596
https://incidentdatabase.ai
https://incidentdatabase.ai/cite/596

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

source: https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/

#ossummit

More Ingredients ⇒ More Ways Can Go Wrong

• Software Vulnerabilities
– Interaction between proprietary and open source components in system

– Assessment if a mitigation needs to be applied to an incorporated image or not.

• Hazards from AI/ML model
– Biases in training data sets

– Interaction issues after update of model and with other software on system

• Training Data Sets
– Data used to train, test & validate the AI/ML models in use the system

• Remote Services
– External Environment awareness for navigation support

– Software & model updates

We need to expand from
Software BOM ⇒ System BOM
in tracking dependencies between
the “ingredients” especially when
there are safety elements

#ossummit

Standardized Metadata is Needed from the Supply Chains

All supply chains contributing “ingredients” (hardware, software, data
sets, services) need to provide metadata in a standard format, so risk can
be accurately assessed and managed.

• What software component versions are executing on which specific hardware devices (and/or models,
and/or simulators/FPGAs)?

• What software components direct and transitive dependencies should be monitored for vulnerabilities?

• What is the provenance of how a model was trained? What datasets were used for testing and
validation?

• How were the datasets used for training created? Are there known biases?

• How were the software components and models integrated and tested?

• What APIs are used to manage updates though remote services?

• What remote services does the running software and trained models depend on? What happens
when the service is not available?

• How tracking updates to software, model, data sets in a product line, so current picture at any point in
time?

#ossummit

Standardized Metadata Needs to be Accurate

From all supply chains (hardware, software, datasets, services) the standard format
should:

• Capture the data when it is created in the product’s lifecycle

– Design - system requirements, plans, processes
– Source - source files, make scripts, build processes, test files, …
– Build - built applications, libraries, firmware, build configuration, …
– Deploy - application configuration information, installed dependencies, validation,...
– Runtime - system configuration information, …

• Assemble the facts into knowledge about the system and it’s intended behavior

– Use relationships to link between facts about each component

– Create knowledge graph to represent product line at any point in time including
requirements, sources, tests, and evidence that the requirement are satisfied.

#ossummit

Essential for Critical Infrastructure to have information, too!

source: https://www.nisc.go.jp/eng/index.html#sec4

https://www.nisc.go.jp/eng/index.html#sec4

#ossummit

Connecting a Product’s Supply Chain MetaData

Photo by Luke Chesser on Unsplash

Photo by Bernd
Klutsch on Unsplash

Database containing all
product line component
metadata, the
relationships between
components,
requirements and
evidence.

https://unsplash.com/@lukechesser?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/graphs-of-performance-analytics-on-a-laptop-screen-JKUTrJ4vK00?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@bk71?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@bk71?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/pile-of-books-nE2HV5AUXFo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Evolving SPDX profiles to provide
the framework for connecting
metadata about components,
processes, requirements and
evidence to support product line
management.

#ossummit

SPDX Evolution

SPDX 2.2+ (ISO/IEC 5962:2021) supports exchanging metadata between systems

- Software BOM metadata and relationships between components.
- Supports traceability between requirements, code, tests & evidence

SPDX 3.0 to support the databases more efficiently

- Introduces profiles to capture domain specific metadata about components and their
interactions at points in time

- Extends beyond software to capture AI/ML model and dataset provenance
- Supports product lifecycle metadata and incorporation of updates to remediate

vulnerabilities
- Import from suppliers and export to customers current state at point in time

SPDX 3.1 extend beyond software to support safety profile needs for “all ingredients”

- Work already in progress on Hardware, Services and Safety Profiles

https://www.iso.org/standard/81870.html

#ossummit

SPDX 3.0 Profiles

Security information - vulnerability details related to software

Build related information - provenance and reproducible builds

Information about AI models - ethical, security, and model data

Information about datasets - AI and other data use cases

Minimal subset to support industry supply chain workflows

Information about copyrights and licenses - supports compliance

Information specific to software

Information used across all profiles

#ossummit

Support generating SBOMs when the facts are known

Source SBOM
Build SBOM

Deployed SBOM

Runtime SBOM

Design SBOM

#ossummit

Align with the SBOM Types from CISA

SBOM TYPE DEFINITION

Design SBOM of intended, planned software project or product with included components (some of which may not yet exist)
for a new software artifact.

Source SBOM created directly from the development environment, source files, and included dependencies used to build an
product artifact.

Build
SBOM generated as part of the process of building the software to create a releasable artifact (e.g., executable or
package) from data such as source files, dependencies, built components, build process ephemeral data, and other
SBOMs.

Deployed
SBOM provides an inventory of software that is present on a system. This may be an assembly of other SBOMs that
combines analysis of configuration options, and examination of execution behavior in a (potentially simulated)
deployment environment.

Runtime
BOM generated through instrumenting the system running the software, to capture only components present in the
system, as well as external call-outs or dynamically loaded components. In some contexts, this may also be referred
to as an “Instrumented” or “Dynamic” SBOM.

Analyzed
SBOM generated through analysis of artifacts (e.g., executables, packages, containers, and virtual machine
images) after its build. Such analysis generally requires a variety of heuristics. In some contexts, this may also be
referred to as a “3rd party” SBOM.

Source: Types of Software Bills of Materials (SBOM) published by CISA on 2023/4/21

https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom

SPDX 2.3 Relationships to Clarify Dependencies

#

DESCRIBES DEPENDENCY_OF PREREQUISITE_FOR GENERATES VARIANT_OF

DESCRIBED_BY RUNTIME_DEPENDENCY_OF HAS_PREREQUISITE TEST_OF FILE_ADDED

CONTAINS BUILD_DEPENDENCY_OF ANCESTOR_OF TEST_TOOL_OF FILE_DELETED

CONTAINED_BY DEV_DEPENDENCY_OF DESCENDENT_OF TEST_CASE_OF FILE_MODIFIED

DYNAMIC_LINK OPTIONAL_DEPENDENCY_OF DOCUMENTATION_OF EXAMPLE_OF PATCH_FOR

STATIC_LINK PROVIDED_DEPENDENCY_OF BUILD_TOOL_OF METAFILE_OF PATCH_APPLIED

AMENDS TEST_DEPENDENCY_OF EXPANDED_FROM_ARCHIVE PACKAGE_OF REQUIREMENT_FOR

COPY_OF OPTIONAL_COMPONENT_OF DISTRIBUTION_ARTIFACT DATA_FILE_OF SPECIFICATION_FOR

DEPENDS_ON DEPENDENCY_MANIFEST_OF GENERATED_FROM DEV_TOOL_OF OTHER

For more details see: https://spdx.github.io/spdx-spec/v2.3/relationships-between-SPDX-elements/

https://spdx.github.io/spdx-spec/v2.3/relationships-between-SPDX-elements/

SPDX component modularity and
relationships between components,
allows us to create the knowledge
graph for accurate and efficient
Safety & Security Analysis

Licensed under CC-BY-SA-3.0

Manage Safety Artifacts with SBOMs

Design SBOM Functional Safety Management (Plans) and Safety Concept

Source SBOM Requirements, Design, Safety Analysis, Source Code, Test Cases

Build SBOM Build Framework, Build configuration and environment data, Test
Framework, Executable, Test Reports

Deploy SBOM Deployed configuration and environment data, Hardware architecture
specific information and data, deployment tests and reports

Runtime SBOM Runtime relevant data (configuration data), training data, error logging
data

Licensed under CC-BY-SA-3.0

SPDX Style Dependencies in a FuSa Project

Requirements

Component
Qualification /
Supply Chain

Validation &
Assessment

Tooling Eval &
Qualification (Dev,
Verification, Build,
Deploy…)

Architecture &
Design

Implementation
(Code)

Unit Verification &
Tests

Integration &
Tests

Software Tests

Documentation
Management Plan

Configuration
Management Plan

Requirements
Management Plan

Reports

Reports

Reports

Functional Safety
Management Plan

SPECIFICATION_FOR

SPECIFICATION_FOR

REQUIREMENT_FOR

REQUIREMENT_FOR

TEST_OF

TEST_OF

TEST_OF

EVIDENCE_FOR

EVIDENCE_FOR

EVIDENCE_FOR

SPECIFICATION_FOR

Licensed under CC-BY-SA-3.0

Design SBOM to Source SBOM

!!

**

Zephyr Safety Dev
Plan

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

Software
Requirements
Specifications

##

** Coding Guidelines

Software
Component Design
Specifications

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

REQUIREMENT_FOR

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

Licensed under CC-BY-SA-3.0

Source SBOM to Build SBOM

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

Licensed under CC-BY-SA-3.0

Dependency Identification between Components

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

??

?

?

?

?

??

?

?

?

?

?

?

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

?

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image
?

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Test Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

Zephyr Safety Dev
Plan

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

Software
Requirements
Specifications

##

** Coding Guidelines

Software
Component Design
Specifications

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

?

Licensed under CC-BY-SA-3.0

Component Level Requirements Traceability

**Plans
Package

Safety
Concept ##

**
Implementation
Guidelines
Package

SPECIFICATION_FOR

##
Specification Package
(Requirements)

<>
Source Package
(Code, Scripts, Docs)

??
Test Package
(Test Spec, Scripts)

REQUIREMENTS _FOR

TEST_OF

SPECIFICATION_FOR

R
EQ

U
IR

EM
EN

TS_FO
R

SPECIFICATION_FOR

SPECIFICATION_FOR GENERATES

Executable

Test Framework

GENERATES Evidence,
reports

Logs

GENERATES

GENERATES

INPUT_OF

EVIDENCE_FOR

Licensed under CC-BY-SA-3.0

When needed: Traceability Inside Component
Requirement to Code to Tests to Evidence

foo.c

<>

Requirement
A.1

##

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

EVIDENCE_FOR

Licensed under CC-BY-SA-3.0

When needed: Traceability Inside Component
Requirement to Code to Tests to Evidence

foo.c

<>

Requirement
A.1

##

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

EVIDENCE_FOR

Bug Fix

Licensed under CC-BY-SA-3.0

foo.c

<>

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##
source file

<> Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

Bug Fix

Requirement
A.1

EVIDENCE_FOR

New
Requirement
From Impact
Analysis

##

##

NR test

?? GENERATES?? Log from
NR test

!!

Test framework

!!

Traceability Inside Component
New Requirement to Code to Tests to Evidence

Licensed under CC-BY-SA-3.0

##

B.1.1 test

??

B.1.2 test

??

B.1.3 test

??

Log from
B.1.1 test!!

Log from
B.1.2 test

!!

Log from
B.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!
GENERATES

GENERATES

GENERATES

Bug Fix

Requirement
B.1

EVIDENCE_FOR

foo.c
<>

make

<>

REQUIREMENTS _FOR

##
A.1.1 test

??

A.1.2 test

??

Requirement
A.1

REQUIREMENTS _FOR

Test framework

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

GENERATES

GENERATES

REQUIREMENTS _FOR

GENERATES

Executable
image

GENERATES

Inside Component: Traceability of Source to Requirements
Code to Requirements to Tests to Evidence

How can we establish
“Requirements” for Open Source
Components that System
Engineering & Safety Analysis
need?

#ossummit

Open Source Projects working to Support Functional Safety

Virtualization/Hypervisor:

RTOS:

Linux:

Reproducible Build Framework

The Yocto Project:
It’s not an embedded Linux distribution, it creates a custom one for you!

#ossummit

Yocto Support

Today:
- Reproducible binaries are supported
- Yocto generates SPDX SBOMs for the build toolchain & all components built

by that toolchain, to source level today, by a single configuration change
- System view is done by a master index (for UUID)today.
- Participated in creation of SPDX Build profile to capture key data

Work in Progress:
- Product Line System BOM generation with SPDX
- Linkage PTEST results with some components: Lot of test data.

Any feature enabled by support in Yocto can scale throughout it’s ecosystem

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Project Goals

● Support safety certification of Linux-based systems with a
set of elements, processes and tools.

● Enable companies to incorporate the output of the project
into products.

● The work is accepted by the open source community,
safety community, regulation authorities, standardization
bodies and system developers.

● Focus the project activities using a Linux-based reference
system to safety-integrity standards. 51

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Systems

Goal(s):
“Enable other working groups within ELISA to put their safety

claims towards Linux in a wider system context.“
Activities:
● Provide a reproducible reference system based on real world architectures.
● Reference system fully automated and fully based on Open-Source technologies.
● Interactions with other OSS projects with relevance to mixed-criticality system

elements.

In practice:
● Working on systems to connect Linux with hypervisor and RTOS & explore

implications of OSS projects interacting mixed criticality systems.
● First one shown during OSS NA - illustrating Linux, Xen & Zephyr interacting.

Enhancement with AGL Linux in progress. SPDX prototyping.

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Systems group integrates ELISA working groups

● Linux Features, Architecture and Code
Improvements should be integrated into the
reference system directly.

● Tools and Engineering process should fit
the reproducible product creation.

● Medical, Automotive and future WG use
cases should be able to strip down the
reference system to their use case demands.

Linux
(e.g from CIP or AGL)

Other
(RT)OSOther

(RT)OS

HW-Virtualization (e.g. Xen)

µPµC

Container more
container

Tooling (e.g. Yocto)

Open Source
engineering proecess

Tool Investigation &
Code Improvement

ArchitectureUse Cases

Linux
Features

53

#ossummit

New Requirements Tool: BASIL Open Sourced

Learn more at: https://elisa.tech/blog/2023/11/30/basil-the-fusa-spice/
Contribute to the code at: https://github.com/elisa-tech/BASIL

https://elisa.tech/blog/2023/11/30/basil-the-fusa-spice/
https://github.com/elisa-tech/BASIL

• Open source real time operating system

• Developer friendly with vibrant
community participation

• Built with safety and security in mind
• Broad SoC, board and sensor support.

• Vendor Neutral governance

• Permissively licensed - Apache 2.0

• Complete, fully integrated, highly
configurable, modular for flexibility

• Product development ready using LTS
includes security updates

• Certification ready with Zephyr Auditable

Zephyr Project
Open Source, RTOS, Connected, Embedded

Fits where Linux is too big

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

Zephyr OS

© 2023 The Zephyr Project — Content made available under CC BY-SA 4.0.

Safety: Initial certification focus
● Start with a limited scope of kernel

and interfaces

● Initial target is IEC 61508 SIL 3 / SC 3
(IEC 61508-3, 7.4.2.12, Route 3s)

● Option for 26262 certification has
been included in contract with
certification authority should there
be sufficient member interest

Scope can be extended to include additional components with associated
requirements and traceability as determined by the safety committee

© 2023 The Zephyr Project — Content made available under CC BY-SA 4.0.

Current requirements work
- Used tooling: StrictDoc

(https://github.com/strictdoc-p
roject/strictdoc)

- Decision on UIDs for
requirements (UID will be
generated by StrictDoc)

- Hierarchical structure of
requirements that works for
the project

- Capturing the requirements in
StrictDoc which is working
towards import/export of
SPDX

https://github.com/strictdoc-project/strictdoc
https://github.com/strictdoc-project/strictdoc

Mission Statement

The Xen Project
● What is it?

○ Xen is a Type-1 hypervisor that plays a central role in providing isolation between different
software components

● The history of Xen
○ The project started in 2003 from Cambridge University
○ Became a Linux Foundation project in 2013
○ It’s widely used for it’s safety and security first environments
○ The flexible architecture allows for diverse applications and service needs to coexist on the

same hardware
● Open source project

○ Many subprojects: Hypervisor, Windows PV, XAPI, automotive etc
○ Intel and AMD x86 and ARM already supported
○ Diverse community of maintainers and contributors from Amazon, SUSE, XenServer

(formerly Citrix) and more

#ossummit

Xen Support

Today:
- Xen is chosen for safety critical applications due to its maturity and robust

security features
- Can be configured to provide real-time scheduling for VMs
- Allows critical tasks to run within predefined time constraints

Work in Progress:
- Improve Xen coding style with MISRA-C
- Implement features to improve real-time and reduce interference
- Project members working on getting Xen safety certified for 61508 & 26262

#ossummit

Next steps to continue the discussion?

Augmenting open source components:
Wednesday, December 6 ᐧ 15:05 - 15:45 ᐧ Conference Room 1

• Linux: join in ELISA working groups
• Zephyr: join in the safety working group
• Xen: join the FuSa special interest group
• Yocto: join the build & release communities

Framework for connecting “All the Ingredients”:
• SPDX: join the Functional Safety(FuSa) profile group meetings and/or

mailing list

https://elisa.tech/community/working-groups/
https://lists.zephyrproject.org/g/safety-wg
https://wiki.xenproject.org/wiki/FuSa_SIG/Charter
https://github.com/spdx/meetings#functional-safety-profile-group-meetings
https://lists.spdx.org/g/spdx-fusa
https://sched.co/1U2O5

Integrating Open Source efficiently into
System Engineering practices is overdue,
community required.

Hint: don’t expect upstream project maintainers to take the lead here.

Keynote: Building Dependable Systems with Open Source
Schedule: 10:15 Dec 5, 2023 https://sched.co/1Tyqo
Duration: 15 minute
Speaker Guide: https://events.linuxfoundation.org/open-source-summit-japan/program/in-person-speaker-guide/

Abstract: By looking at the press headlines, we've learned that open source is already being used
in market segments (like space, automotive, industrial, medical, agricultural) applications that
have safety considerations today. Details about the safety analysis performed are behind NDAs
and are not available to developers in the open source projects being used in these products. To
make the challenge even more interesting, the processes the safety standards are expecting are
behind paywalls, and not readily accessible to the wider open source community maintainers and
developers. Figuring out pragmatic steps to adopt in open source projects requires the safety
assessor communities, the product creators, and open source developers to communicate
openly. There are some tasks that can be done today that help, like knowing exactly what source
is being included in a system and how it was configured and built. Automatic creation of accurate
Software Bill of Materials (SBOMs), is one pragmatic step that has emerged as a best practice
for security and safety analysis. This talk will overview some of the methods being applied in
some open source projects (like Linux, Xen & Zephyr), as we try to establish other pragmatic
steps when open source projects are used in safety critical:

https://sched.co/1Tyqo
https://events.linuxfoundation.org/open-source-summit-japan/program/in-person-speaker-guide/

