Zephyr™ Project
What is Zephyr™ Project?

Small Footprint RTOS for IoT
- As small as 8KB
- Enables application code to scale
- Configurable
- Modular

Truly Open Source
- Hosted by Linux Foundation
- Transparent development
- Apache 2.0 License

Cross Architecture
- ARM
- x86
- ARC
- RISC-V
- Tensilica
- Nios II
Why Does the Industry Need RTOS Consolidation?

- High NRE hindering Mass adoption
- Fragmentation with large number of choices
- No single RTOS for IoT use cases x-platforms
- OEMs and Devs need a solution they can influence
- Limited options that include security for connected, constrained devices
 Collaborate on security with others
- Roll your own demands high level of maintenance
Zephyr Project Membership:

Platinum:
- Linaro
- NXP
- Intel
- Synopsys

Silver:
- runtime.io
- Nordic Semiconductor
Zephyr Architectures
Zephyr Community: 1 Year later...

Zephyr Launch
Feb 17, 2016
5 Repositories ➔ 10
80 Authors ➔ 207
5,806 Commits ➔ 14,239
4 Boards ➔ 57
gerrit ➔ github
Goal: Separate business decisions from meritocracy, technical decisions

<table>
<thead>
<tr>
<th>Governing Board</th>
<th>Technical Steering Committee</th>
<th>Community</th>
</tr>
</thead>
</table>
| • Decides project goals
 • Sets business, marketing and legal decisions
 • Prioritizes investments and oversees budget
 • Oversees marketing such as PR/AR, branding, others
 • Identifies member requirements | • Serves as the highest technical decision body consisting of project maintainers and voting members
 • Sets technical direction for the project
 • Coordinates X-community collaboration
 • Sets up new projects
 • Coordinates releases
 • Enforces development processes
 • Moderates working groups
 • Oversees relationships with other relevant projects | • Code base open to all contributors, need not be a member to contribute.
 • Path to committer and maintainer status through peer assessed merit of contributions and code reviews
 • Ecosystem enablement |

Zephyr Project Governance

- Financial & Policy Oversight
- SW Certification Oversight
- Marketing Oversight
- Kernel & Subsystem Maintainers
- Security Maintainer
- Developer Tools Maintainers
- Architecture Maintainers
- Individual Contributors
- Member Organizations
- Supporting Organizations
- Others
Security and Global IoT
“… to maintain and address all security concerns in the sector, both software and hardware security chips should be used.” – Technavio, January 2017

Global internet of things security market is expected to grow at a CAGR of nearly 48% during the period 2017-2021 – Technavio, January 2017

Zephyr Project & Securing IoT
● Focus on addressing security needs of connected, resource constrained devices
● Work group focused on defining the safety & security strategy and development plans
● Membership marries HW & SW security expertise and investment through open source development
● The goal of working group to develop a safety & security auditable version of the OS
Zephyr OS: Auditable Code Base

- Initial and subsequent certification targets to be decided by Governing Board.
- An auditable code base will be established from a subset of Zephyr OS.
 - Code bases will be kept in sync from that point forward.
 - More rigorous processes (necessary for certification) will be applied before new features move into the auditable code base.
- Processes to achieve selected certification to be determined by Security Working Group and coordinated with Technical Steering Committee.
Code Repositories

- Development
 - Community Contributions via DCO
 - Releases

- Long Term Support "Stable"
 - Safety & Security Processes
 - Products

- Auditable
 - Products ready to be Certified
 - Audit Ready Documentation (Platinum Members Only)

Backports and keeping configurations in sync
Zephyr Eco-System

Zephyr OS
- The kernel and HAL
- OS Services such as IPC, Logging, file systems, crypto

Zephyr Project
- SDK, tools and development environment
- Additional middleware and features
- Device Drivers

Zephyr Community
- Bootloader
- 3rd Party modules and libraries
- Support for Zephyr in 3rd party projects, for example: Jerryscript, Micropython, Iotivity

Kernel / HAL
- Scheduler
- Kernel objects and services
- low-level architecture and board support
- power management hooks and low level interfaces to hardware

OS Services and Low level APIs
- Platform specific drivers
- Generic implementation of I/O APIs
- File systems, Logging, Debugging and IPC
- Cryptography Services
- Networking and Connectivity
- Device Management

Application Services
- High Level APIs
- Access to standardized data models
- High Level networking protocols
Architecture

- Highly Configurable, Highly Modular
- Cooperative and Pre-emptive Threading
- Memory and Resources are typically statically allocated
- Cross architecture (IA32, ARM*, ARC, NIOS-II, RISC V, Xtensa, others WIP and under discussion)
Zephyr Roadmap

<table>
<thead>
<tr>
<th>Zephyr Releases</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aug</td>
<td>Sept</td>
</tr>
<tr>
<td>Zephyr 1.5</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Zephyr 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zephyr 1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zephyr 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< Future ></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zephyr 1.6
- QMSI 1.3
- Unified Kernel
 - New Kernel APIs with shims for old Kernel APIs
- HW Crypto Offload
- Native CoAP
- Shell Improvements
- USB Mass Storage
- Power Management Enhancements for Quark SE
- Nordic BLE Controller

Zephyr 1.7
- Unified Kernel continued
- Direct Interrupt handling
- CMSIS support
- Native IP Stack
 - New Net and L2 APIs
 - Native protocols: MQTT, HTTP Library, CoAP (Zoap), NATS
- IoTivity/OCF
- Device Tree
- Bootloader Support
- Openocd support
- RISC V Port
- Xtensa Port

Zephyr 1.8
- Transition to github
- Infrastructure improvements
- Tick-less Kernel
- BT 5.0 Features
- Eco System: Tracing, debugging support through 3rd party tools
- Memory Management
 - Memory Protection (MPU)
 - Thread Isolation
 - Paging
- Expand device support

< Future >
- Improved Build and Debug
 - 3rd Party Compilers Support
 - Build on Mac/Windows
- Asymmetric Multi Processing (AMP) - OpenAMP
- Initial Thread Stack components
- Expand LLVM Support
- Dynamic runtime modules
- Precision Time Protocol
- Time Sensitive Networks
- SMP Support
- CanBUS, SocketCAN
- Kernel data integrity
- BLE Mesh
- LWM2M
- FOTA Updates
- Additional architectures
- IDE Integration
Benefits of Adopting Zephyr Project

• Roll your own is expensive & difficult to develop & maintain
• Permissively licensed corresponds to ease of adoption
• Multiple corporate sponsorships assures long term commitment and longevity
• Long standing reputation of open source investment among current membership
• Community innovation has proven faster for progression
• Project development is a collaboration of industry experts
Membership has its Privileges

- Guide market segment focus priorities
- Board seats are limited to members only
- Board sets priority for audit and certification activities
- Platinum members have access to reference audits and certification artifacts
Participate!

Examine the code, contribute and join us!

Impact architecture
Direction
Marketing / Advocacy
Decision making
Backup - Technology Information
Zephyr Project

- **SDK**
 - Toolchains
 - Host tools
- Tools and development environment
- Testing:
 - Automated Hardware Testing
 - Test harnesses
- Documentation
- Management Console and Bootloader
- Binding and Frameworks, i.e:
 - Zephyr.js
 - Python bindings
 - Iotivity
- Cloud Connectivity and Gateways
Advanced Usages

AMP

SMP
IP stack in Zephyr 1.7

- Dual mode native stack.
- UDP/TCP
- Elements of RPL, 6LoWPAN
- Protocols:
 - HTTP, CoAP, MQTT, DNS, DHCPv4, DTLS
- 802.15.4 Restricted Functionality Device support
- Drivers for
 - CC2520 (802.15.4)
 - ENC28J60 (802.3)
 - NXP FRDM K-64F (802.3)
 - NXP MCR20A (802.15.4)
 - BLE/6LoWPAN (IPSP node)
 - WPAN-USB/WPAN-Serial (Zephyr as a 15.4 adapter/serial radio for Linux)
IP stack: Next (1.8+)

- Thread enablers (MLE, IP-IP tunneling, 6LoWPAN and IP routing etc.)
- VLAN support for Ethernet, NTP/SNTP
- Samples:
 - Offload, mesh
- Optimization and Profiling
- Testing:
 - IPv6 ready logo,
 - TAHI full coverage
- Thread 1.2
- 15.4 IOP testing
- ...
Bluetooth support in Zephyr 1.7

- Combined Controller + Host support for nRF5 boards
 - 1.6 was limited to Controller-only on nRF51
- Memory optimizations (threads & buffers) to easily fit 16k targets
- New SPI HCI driver for ST BlueNRG module
 - Carbon board will try to reuse this
- Improved BR/EDR (Bluetooth Classic) support
- Fix UART HCI driver to never drop packets by taking advantage of HW flow control
- Latency reductions in Controller code
- IPSP/6LoWPAN ported & working on the new IP stack
Bluetooth: Next (1.8+)

- Bluetooth 5.0 Controller & Host features
- Bluetooth Mesh
 - As soon as the specification gets adopted
 - Collaboration is open to companies with existing spec access
- Vendor HCI commands & events
 - Mesh optimizations
 - Various things that standard HCI doesn’t provide, like default static address reading
- Further memory consumption reduction with the help of k_poll()
- Completion of basic BR/EDR protocols (RFCOMM, L2CAP & SDP)
Integrated Security

- Standardized building block and robust communication stacks
- Cryptographic library based on TinyCrypt2
- TLS/DTLS: Provided by mbedTLS
- Now: Static and single binary applications, Single address space, No loadable modules
- Planned security features:
 - Device Management and Updates
 - APIs to support vendor specific Crypto implementations (software/hardware)
 - Secure Key Storage