Zephyr in Practice:
From Functional Design to Efficient Implementation

Zephyr Meetup Garching - November 20th 2025

Tobias Kastner, inovex

That’s me

Solution Architect Medical IoT @ inovex GmbH
#FOSS4MEDICAL

e PhD in Physics (long ago)

e SW/System Architect since 15 years
o mainly Medical Devices

e Trainer & Technical Consultant
o SW-Architecture, Zephyr, Yocto

@tobiaskaestner e In Love w/ Zephyr since 2016

o realised several prototype projects for life-science R&D
o Maintainer of TiacSys-Bridle Project

o Participant Zephyr Safety-WG

Tobias Kaestner

in
O

@tobiaskaestner

Agenda

e From User Needsto SW
Architecture

e Architecting Embedded SW with
Zephyr

e Designing Embedded SW with
Zephyr

From User Needs to j
SW Architecture - o

A day in the lab - The life-science domain

- | s e Developing new diagnostic tests requires
' extensive research & development

o to find correct chemical formulation
o to determine physical parameters
o to develop algorithms for signal extraction

e Scientists can be supported by devices to
automate many/all of the required tasks

v

inovex

Modelling the Life-Science Domain

Doing lab experiments requires

moving & mixing liquids

heating & cooling reagents

measuring signals from chemical reactions
running prescribed protocols (assays) repeatedly

System functionalities

pump

heat, cool

measure signals (electrodes, image)
run a script

inovex

System functionalities & modalities

System functions expressed in terms of the specific domain

Modalities describe recurring facets or aspects of system functions

) 1 3 4

System functionalities Cross-cutting modalities
How to
e pump
e heat, cool invoke
e measure signals (electrodes, compose

monitor/observe
parametrize

image)
® run a script

the system functions Vv
TNovexX

System functionalities & modalities

System functions expressed in terms of the specific domain

Modalities describe recurring facets or aspects of any system function

\ 1 S 4

System functionalities Cross-cutting modalities
e application domain specific e generic to most/all computerized
e require most likely specific systems
technical realization e can most likely re-use existing

technical realizations

< Caution: In the real world most things fall onto a spectrum, eg. “run script” v
inovex

System function composability

Composite Function
(“Run Script”)

Y
Basic Basic Basic
Function Function Function
(“Heat”) (“Pump”) (“Measure”)
depends on

_—

User-level tasks are typically expressed
as composite system functions

Decompose system functions to

e model functional dependencies
e identify mutually independent
basic functions

N4

inovex

Cross-cutting modalities

System function

i System function invocation . .
Modality y composition
I I
: Human Machine Interface/ e
Technical . . Composability
Concept Machine Machine Interface
e Command Line Interface e Task model
Realization e Graphical User Interface e Data passing
e Remote Procedure Call °
Patterns e REST API
[]

v
inovex

Cross-cutting modalities

System function

i System function monitorin . ..
Modality y Hnetio onitoring parametrization
I -
Technical Observability Configurability
Concept
e Logging e Calibration data
Realization e Telemetry e Credentials
° e Access modes
Patterns o

v
inovex

Mapping the functional architecture

Domain Analysis

Functional Architecture

Technical Framework

Component Architecture

System Function
e%\3°5e (“run script”) e)(pose BUilding blocks Conceptual
Models
Modality Modality -
(“invoke™) (“observe”)

ose Design Idioms Tools

e

@,\,'OOSS

System Function
(“heat”)

N4

inovex

Architecting
Embedded Software
with Zephyr

Zephyr - A modern embedded Software Framework

Repositories

Your Code

3rd party
Modules

Vendor
HALs

Zephyr

N4

inovex

15

Zephyr's Conceptual Models

Programming Model: RTOS Kernel

Plus 3 domain-specific models
Feature Model: to select desired functionality

Hardware Model: to describe
hardware properties

Build System: to describe build process

Hardware

Model

Feature

Model

Kernel

“ Build System

Zephyr's High-Level Building Blocks

Subsystems - have own runtime context via Tasks, Work Queues

Libs - collections of functions for synchronous invocation

Drivers - implement HW-specific details against common device APIs

n
c
=
e
]
(%]
o=
Qo
Q
<

SW-Architecture needs to create or re-use these building blocks

to express the functional architecture (functions, modalities). O
inovex

(Some of) Zephyr's Design Idioms

e RTOS API
o implied by Programming model
e CPP (C-Pre-Processor) driven Code Generation
o non-typed meta-programming
e APIs from Function Pointer Structs
o decouples interface users from implementors
e Iterable Sections
o build-time resolvable plugin mechanism g

inovex

Mapping the functional architecture

v
gj
«

>
e Modalities map naturally to
. . Functional Zephyr Building
(existing) Zephyr subsystems Architecture Blocks
e System functions become
additional subsystems
. system
e Services expose aspects of function | " oL s
system functions via bindings .-
modality r~
....... o Binding
Mapping preserves structural
relationships of functional
architecture
o

inovex

Functional Architecture & Component Architecture

Our Example: Test rig for life-science experiments

Zephyr Subsystem
Modalities (Services) System Functions
\
Script MQTT- Shell Loaain Heater Motion Analog
Engine RPC 9ging Control Control Frontend

Decomposition into System-Level Functions & System Services
Modalities & Functions mutually independent from each other

o

inovex

Functional Architecture & Component Architecture

Services

System Functions

<<Subsystem>>

Script Engine

<<Subsystem>>

MQTT-RPC

<<Subsystem>>

Zephyr Shell

<<Subsystem>>

Zephyr Logging

Script
Bindings

RPC
Bindings

Shell
Bindings

<<Subsystem>>

Core
Logic

Zephyr Kernel

Heater
Control

Script Script
Bindings Bindings
RPC RPC
Bindings Bindings
Shell Shell
Bindings Bindings
Core Core
Logic Logic
Motion Analog
Control Frontend

Zephyr provides many services already
o Shell, Logging, Settings, ...

Each Zephyr service also provides

extension points

o SHELL_CMD,

o LOG_MODULE_DEFINE,

o SETTINGS_STATIC_HANDLER_DEFINE
o

Use conceptual model and idioms to
implement system function specific
subsystems

v

inovex

Modeling Software Features w/ Kconfig

21

Services

System Functions

<<Subsystem>>

Script Engine

<<Subsystem>>

MQTT-RPC

<<Subsystem>>

Zephyr Shell

<<Subsystem>>

Zephyr Logging

Script Script Script
Bindings Bindings Bindings
RPC RPC RPC
Bindings Bindings Bindings
Shell Shell Shell
Bindings Bindings Bindings
Core Core Core
Logic Logic Logic
Heater Motion Analog
Control Control Frontend

O 0o NOULLT S WN BB

=
(NS

menu "ACME Subsystems"
menu "ACME Modules"
rsource "heater/Kconfig"
rsource "motion/Kconfig"
rsource "afe/Konfig"
endmenu #Modules
menu "ACME Services"
rsource "scriptengine/Kconfig"
rsource "mqtt_rpc"
endmenu #Services
endmenu #ACME Subsystems

Functional
Architecture

Software
Architecture

Modeling Software Features w/ Kconfig

1 menuconfig ACME_SUBSYS_HEATER # option to toggle the entire subsystem on/off

2 bool "Heater subsystem"
help
4 The Heater subsystem is responsible for measuring and controlling
5 the temperature.
6
Subsystems mutually independent S
o enable/disable 9 conf:i.g ACME_SUBSYS_HEATER_THREAD_STACK_SIZE
10 int "Stack size of subsystem thread"
11 default 2048
. . . 12
B]nd]ngs depend on service 13 config ACME_SUBSYS_HEATER_MQTT_RPC
o 1o . . 14 bool "Enable MQTT-RPC bindings for $(subsys-str) subsystem"
providing corresponding extension % depends on ACME_MQTT_RPC
o 16
pomt 7 config ACME_SUBSYS_HEATER_SHELL
bool "Enable shell bindings for $(subsys-str) subsystem"
19 depends on SHELL
Feature tree mapped to build <

system ==

-

zephyr_library_named (acme-heater)

zephyr_library_sources(heater.c)

zephyr_library_sources_ifdef (CONFIG_ACME_SUBSYS_HEATER_SHELL heater_shell.c)
zephyr_library_sources_ifdef (CONFIG_ACME_SUBSYS_HEATER_MQTT_RPC heater_mqttrpc.c)
zephyr_library_sources_ifdef (CONFIG_ACME_SUBSYS_HEATER_SCOPE heater_scope.c)

NoOoOubhsh, WNR

22

Designing Software
with Zephyr =)

Designing Subsystems for Zephyr

Subsystem e Subsystems provide own runtime
context
<<Thread->> Datg F?ssing Extension Runtime API wraps Data Passing
Core Logic Primitives Point Primitives to interact with core
logic
Drivers, Libs e Bindings “hook” into other
: subsystems
Runtime o primary place to use the
— API Runtime API
Subsystem Bindings
Shell
Bindings Bindings Bindings

EXPLORER

> OPEN EDITORS

v SAMPLES

> .vscode
> boards
> dts
v include/acme
C heaterh
C scriptengine.h
> shields
v subsys
> m_afe
v m_heater
M CMakelists.txt
C heater_mqttrpc.c
C heater_script.c
C heater_shell.c
C heaterc
& Kconfig
Vv s_script
M CMakelLists.txt
iterables.|d
C scriptengine.c
M CMakelists.txt
& Kconfig

& Kconfig.template.su...

C heater_shell.c X

subsys > m_heater > C heater_shell.c

Designing Subsystems for Zephyr

C scriptengine.h X

include > acme > C scriptengine.h

1 #include <zephyr/shell.h> — 1 #include <zephyr/sys/iterable_sections.h>
2 #include <acme/heater.h> 2 #include <acme/lib/lua/lua.h>
3 3
4 static int cmd_heater_on(const struct shell *sh, 4 // many other things here
5 size_t argc, char **argv) { 5
6 return heater_on(); 6 const struct {
7/ } 7 const char *name; o o
8 8 int (*)(lua_State *L) register_func; EXtenS]On PO]nt
9 static int cmd_heater_off(const struct shell *sh, 9 } script_function_entry;
10 size_t argc, char **argv) { 10
11 return heater_off(); 13 #define SCRIPT_ENGINE_REGISTER_FUNC(_name, _register_func) \
2. } 12 static const STRUCT_SECTION_ITERABLE(script_function_entry, _name) = {\
13 13 .name = STRINGIFY(_name), \
14 SHELL_STATIC_SUBCMD_SET_CREATE(sub_heater, 14 .register_func = _register_func \
15 SHELL_CMD(on, NULL, "Turn on heater"), 15 }
16 SHELL_CMD(off, NULL, "Tuxrn off heater"), 1A
17 SHELL_SUBCMD_SET_END) ; C heaterh X
18
19 SHELL_CMD_REGISTER(heater, &sub_heater, L S OB HESRE
20 "Heater commands, NULL"); 1 #include <zephyr/kernel.h>
3 //**Public API of the Heater Subsystem */
C heater_script.c X 4 P
subsys > m_heater > C heater_script.c Z i:: :E:Ezi:g?;z ;; Q IRU nt]me API
1 #include <acme/scriptengine.h>
2 #include <acme/heater.h>
3
4 static int 1_heater_on(lua_State *L){ C scriptengine.c X a -
5 int result = heater_on(); subsys > s_script > € scriptengine.c
6 lua_pushinteger(L, result); - 1 static int register_functions()
7 return 1; 2 {
8 b 3 STRUCT_SECTION_FOREACH(script_function_entry, entry){
9 4 lua_pushcfunction(scriptengine.L, entry.register_func);
10 SCRIPT_ENGINE_REGISTER_FUNC(heater_on, 1_heater_on); 5 lua_setglobal (scriptengine.L, entry.name);
6 }
7}

Applications as Configuration Management Containers

[prj.conf]

e Any Zephyr application is a concrete instance
CONFIG_ACME_SERVICE_SCRIPTING=y of the feature model
CONFIG_ACME_SERVICE_MQTTRPC=y . .]

e Relevant features described in prj.conf
CONFIG_ACME_SUBSYS_MOTION=y ° . .
O G U e Configuration fragments can be merged at
CONFIG_ACME_SUBSYS_AFE=y build-time:

o context-of-use (prod vs devvs test)
o hardware (board-specific overlays)

<

int main(int argc, char™ argv) Ideally, applications do not contain
, o rewme any additional code

[dev-overlay.conf]

CONFIG_LOGGING=y
CONFIG_SHELL=y

[main.c]

hd

inovex

Summing up

Domain Analysis

[]

)

Identify System Functions & L
Modalities

Mapping

Map to existing Zephyr subsystems/custom
subsystems and their extension points

Configure Application

Realize applications as context-aware

instances of the underlying feature model
. Design/Implement custom subsystems

Use Zephyr's Models & Idioms to implement
additional subsystems,
implement bindings

27

Summing up

Domain Analysis

Identify System Functions &
Modalities

Mapping

Map to existing Zephyr subsystems/custom
subsystems and their extension points

Configure Application

Realize applications as context-aware

instances of the underlying feature model
Design/Implement custom subsystems

Use Zephyr's Models & Idioms to implement

additional subsystems,
implement bindings

28

Conclusions

29

Starting an embedded systems design from its functional

decomposition bears many benefits
o clearly analysed (functional) dependencies
o consistent, domain-oriented terminology
Zephyr supports the work of SW architects with
o advanced models and design idioms
o arich set of existing functionalities
When designing with Zephyr always consider
o feature model and build system integration
o re-using existing subsystems

Thank You

Check out our Zephyr Hands-On Trainings

Find out more
https://www.inovex.de/de/training/zephyr-basic-training/

Dr. Tobias Kastner .
Solution Architect Medical IoT Tobias Kaestner

tobias.kaestner@inovex.de

O @tobiaskaestner
+49 152 3314 8940

+.| Allee am Rothelheimpark 11, Q ~av stner
) 91052 Erlangen - @tobiaskae il IR

-

R —
. -
- ot s A e -
p—— "SR -

mailto:tobias.kaestner@inovex.de
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.inovex.de/de/training/zephyr-basic-training/

