
Zephyr in Practice:
From Functional Design to Efficient Implementation

Zephyr Meetup Garching - November 20th 2025

Tobias Kästner, inovex

That’s me

Solution Architect Medical IoT @ inovex GmbH

#FOSS4MEDICAL

● PhD in Physics (long ago)
● SW/System Architect since 15 years

○ mainly Medical Devices
● Trainer & Technical Consultant

○ SW-Architecture, Zephyr, Yocto
● In Love w/ Zephyr since 2016

○ realised several prototype projects for life-science R&D
○ Maintainer of TiacSys-Bridle Project
○ Participant Zephyr Safety-WG

Tobias Kaestner

@tobiaskaestner

@tobiaskaestner

● From User Needs to SW
Architecture

● Architecting Embedded SW with
Zephyr

● Designing Embedded SW with
Zephyr

Agenda

From User Needs to
SW Architecture

A day in the lab - The life-science domain

● Developing new diagnostic tests requires
extensive research & development

○ to find correct chemical formulation
○ to determine physical parameters
○ to develop algorithms for signal extraction

● Scientists can be supported by devices to
automate many/all of the required tasks

System functionalities

● pump
● heat, cool
● measure signals (electrodes, image)
● run a script

Doing lab experiments requires

● moving & mixing liquids
● heating & cooling reagents
● measuring signals from chemical reactions
● running prescribed protocols (assays) repeatedly

Modelling the Life-Science Domain

How to

● invoke
● compose
● monitor/observe
● parametrize

the system functions

System functionalities & modalities

● pump
● heat, cool
● measure signals (electrodes,

image)
● run a script

System functionalities Cross-cutting modalities

System functions expressed in terms of the specific domain

Modalities describe recurring facets or aspects of system functions

● generic to most/all computerized
systems

● can most likely re-use existing
technical realizations

System functionalities & modalities

● application domain specific
● require most likely specific

technical realization

System functionalities Cross-cutting modalities

Caution: In the real world most things fall onto a spectrum, eg. “run script”

System functions expressed in terms of the specific domain

Modalities describe recurring facets or aspects of any system function

System function composability

Composite Function
(“Run Script”)

Basic
Function
(“Pump”)

Basic
Function
(“Heat”)

Basic
Function

(“Measure”)

Decompose system functions to

● model functional dependencies
● identify mutually independent

basic functions

User-level tasks are typically expressed
as composite system functions

depends on

Cross-cutting modalities

System function invocation

● Command Line Interface
● Graphical User Interface
● Remote Procedure Call
● REST API
● …

System function
composition

● Task model
● Data passing
● …

Human Machine Interface/
Machine Machine Interface

Composability

Modality

Realization
Patterns

Technical
Concept

Cross-cutting modalities

System function monitoring

● Logging
● Telemetry
● …

System function
parametrization

● Calibration data
● Credentials
● Access modes
● …

Observability Configurability

Modality

Realization
Patterns

Technical
Concept

Functional Architecture

Mapping the functional architecture

System Function
(“run script”)

System Function
(“heat”)

Modality
(“invoke”)

Modality
(“observe”)

expose

expose

expose

expose

Domain Analysis

Component Architecture

Technical Framework

Building blocks

Design Idioms

Conceptual
Models

Tools

Architecting
Embedded Software
with Zephyr

Zephyr - A modern embedded Software Framework

Plus 3 domain-specific models

Feature Model: to select desired functionality

Hardware Model: to describe
 hardware properties

Build System: to describe build process

15

Zephyr’s Conceptual Models

Hardware
Model

Feature
Model

Build System

Kernel

Programming Model: RTOS Kernel

Kernel - Basic RTOS primitives for synchronization, data passing

A
p
p
li
ca

ti
on

s

Drivers - implement HW-specific details against common device APIs

Libs - collections of functions for synchronous invocation

Subsystems - have own runtime context via Tasks, Work Queues

SW-Architecture needs to create or re-use these building blocks
to express the functional architecture (functions, modalities).

Zephyr’s High-Level Building Blocks

(Some of) Zephyr’s Design Idioms

● RTOS API
○ implied by Programming model

● CPP (C-Pre-Processor) driven Code Generation
○ non-typed meta-programming

● APIs from Function Pointer Structs
○ decouples interface users from implementors

● Iterable Sections
○ build-time resolvable plugin mechanism

Functional
Architecture

Zephyr Building
Blocks

Mapping the functional architecture

system
function

modality

expose

Subsystem

Binding

● Modalities map naturally to
(existing) Zephyr subsystems

● System functions become
additional subsystems

● Services expose aspects of
system functions via bindings

Mapping preserves structural
relationships of functional

architecture

Functional Architecture & Component Architecture

● Decomposition into System-Level Functions & System Services
● Modalities & Functions mutually independent from each other

Heater
Control

System Functions

Motion
Control

Analog
Frontend

Modalities (Services)

Script
Engine

MQTT-
RPC

Shell Logging

Zephyr Subsystem

Our Example: Test rig for life-science experiments

Functional Architecture & Component Architecture

● Zephyr provides many services already
○ Shell, Logging, Settings, …

● Each Zephyr service also provides
extension points

○ SHELL_CMD,
○ LOG_MODULE_DEFINE,
○ SETTINGS_STATIC_HANDLER_DEFINE
○ …

● Use conceptual model and idioms to
implement system function specific
subsystems

21

Functional
Architecture

Software
Architecture

Modeling Software Features w/ Kconfig

22

Subsystems mutually independent
● enable/disable

Bindings depend on service
providing corresponding extension
point

Feature tree mapped to build
system

Modeling Software Features w/ Kconfig

Designing Software
with Zephyr

Designing Subsystems for Zephyr

Extension
Point

Runtime
API

Subsystem

<<Thread>>
Core Logic

Data Passing
Primitives

Drivers, Libs

● Subsystems provide own runtime
context

● Runtime API wraps Data Passing
Primitives to interact with core
logic

● Bindings “hook” into other
subsystems
○ primary place to use the

Runtime API
Subsystem Bindings

Shell
Bindings

…
Bindings

…
Bindings

Designing Subsystems for Zephyr

Extension Point

Runtime API

Applications as Configuration Management Containers

int main(int argc, char** argv){
 return 0;

}

CONFIG_ACME_SERVICE_SCRIPTING=y
CONFIG_ACME_SERVICE_MQTTRPC=y

CONFIG_ACME_SUBSYS_MOTION=y
CONFIG_ACME_SUBSYS_HEATER=y
CONFIG_ACME_SUBSYS_AFE=y

main.c

prj.conf

CONFIG_LOGGING=y
CONFIG_SHELL=y

dev-overlay.conf

● Any Zephyr application is a concrete instance
of the feature model

● Relevant features described in prj.conf
● Configuration fragments can be merged at

build-time:
○ context-of-use (prod vs dev vs test)
○ hardware (board-specific overlays)

Ideally, applications do not contain
any additional code

27

Summing up

Domain Analysis

Identify System Functions &
Modalities Mapping

Map to existing Zephyr subsystems/custom
subsystems and their extension points

Design/Implement custom subsystems

Use Zephyr’s Models & Idioms to implement
additional subsystems,
implement bindings

Configure Application

Realize applications as context-aware
instances of the underlying feature model

28

Summing up

Domain Analysis

Identify System Functions &
Modalities Mapping

Map to existing Zephyr subsystems/custom
subsystems and their extension points

Design/Implement custom subsystems

Use Zephyr’s Models & Idioms to implement
additional subsystems,
implement bindings

Configure Application

Realize applications as context-aware
instances of the underlying feature model

● Starting an embedded systems design from its functional
decomposition bears many benefits
○ clearly analysed (functional) dependencies
○ consistent, domain-oriented terminology

● Zephyr supports the work of SW architects with
○ advanced models and design idioms
○ a rich set of existing functionalities

● When designing with Zephyr always consider
○ feature model and build system integration
○ re-using existing subsystems

29

Conclusions

Thank You

Dr. Tobias Kästner
Solution Architect Medical IoT

tobias.kaestner@inovex.de

+49 152 3314 8940

Allee am Röthelheimpark 11,
91052 Erlangen

Tobias Kaestner

@tobiaskaestner

@tobiaskaestner

Check out our Zephyr Hands-On Trainings

Find out more
https://www.inovex.de/de/training/zephyr-basic-training/

mailto:tobias.kaestner@inovex.de
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.google.com/maps/place//data=!4m2!3m1!1s0x47a1ffffca603815:0x62917934dd69623a?sa=X&ved=1t:8290&ictx=111
https://www.inovex.de/de/training/zephyr-basic-training/

